The effect of Size, Value and Idiosyncratic Risk Anomalies on the Relationship between Tail Risk and Stock Excess Returns

Document Type : Original Article

Authors

Department of Accounting, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

Abstract

Capital market anomalies are caused by factors haven’t been considered in capital asset pricing models. The theories of extreme value are one of the arguments for explaining anomalies. On the basis of theory of extreme value, the tail risk is an adverse event that can have a negative impact on stock excess returns. Therefore, this study aimed at investigate the effect of combining the anomalies of size, value and idiosyncratic risk with tail on stock excess returns. In this study, we have used two criteria of Aggregate Tail Risk and Hybrid Tail Covariance Risk to measure the tail risk. For this purpose, using the systematic removal method, a sample of 136 firms listed on the Tehran Stock Exchange in the period from 2008 to 2019 was selected. The research hypotheses were tested using the Five-Factor Fama and French model (2015). The results suggested that the combination of size and tail risk portfolio and the combination of value and tail risk portfolio have a negative effect on excess return on risk. The results also showed that the combination of idiosyncratic risk and tail risk portfolio has a positive and significant effect on stock excess returns. Therefore, by combining these portfolios, investors can gain excess returns in the Iranian capital market. The results generally indicated that tail risk can be added to asset pricing models in addition to the variables of the five-factor Fama and French model.

Keywords

Main Subjects


©2022 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

1. Aboura, S. and Arisoy, Y.E. (2019). Can Tail Risk Explain Size, Book-to-Market, Momentum, and Idiosyncratic Volatility Anomalies?. Journal of Business Finance & Accounting, 46(9-10), pp. 1263-1298. https://doi.org/10.1111/jbfa.12403.
2. Aboura, S. and Chevallier, J. (2018). Tail Risk and the ReturnVolatility Relation. Research in International Business and Finance, 46(2), pp. 16-29. https://doi.org/10.1016/j.ribaf.2016.07.036.
3. Agarwal, V. and Naik. N.Y. (2004). Risks and Portfolio Decisions Involving Hedge Funds. Review of Financial Studies, 17(1), pp. 63-98.
4. Akoundi, K. and Haugh, J. (2010). Tail risk hedging: A roadmap for asset owners. Deutsche Bank Pension Strategies and Solutions.
5. Amihud, Y. and Mendelson, H. (1986). Asset pricing and the bid-ask spread. Journal of Financial Economics, 17(2), pp. 223-249. https://doi.org/10.1016/0304-405X(86)90065-6.
6. Ang, A., Hodrick, R., Xing, Y., Zhang, X. (2009). High idiosyncratic volatility and low returns: International and further US evidence. Journal of Financial Economics, 91(1), pp. 1-23.
7. Bali T.G., Cakici, N. and Whitelaw. R.F. (2014). Hybrid Tail Risk and Expected Stock Returns: When Does the Tail wag the Dog?. Review of Asset Pricing Studies, 4(2), pp. 206-246. https://doi.org/10.1093/rapstu/rau006.
8. Baltussen, G., van Bekkum, S. and van der Grient, B. (2018). Unknown unknowns: Uncertainty about Risk and Stock Returns, Journal of Financial and Quantitative Analysis, 53(4), pp. 1615-1651.
9. Banz, R.W. (1981). The relationship between return and market value of common stocks. Journal of Financial Economics, 9(1), pp. 3–18. https://doi.org/10.1016/0304-405X(81)90018-0.
10. Barberis, N. and Huang, M. (2001). Mental Accounting, loss Aversion, and Individual Stock Returns. Journal of Finance, 56(4), pp. 1247–1292. https://doi.org/10.1111/0022-1082.00367.
11. Basu, S. (1983). The relationship between earnings yield, market value and return for NYSE common stocks: Further evidence. Journal of Financial Economics, 12(1), pp. 129–156. https://doi.org/10.1016/0304-405X(83)90031-4.
12. Berrada, T., Hugonnier, J. (2013). Incomplete information, idiosyncratic volatility and stock returns. Journal of Banking and Finance, 37(2), pp. 448-462. https://doi.org/10.1016/j.jbankfin.2012.09.004.
13. Bhootra, A. and Hur, J. (2015). High idiosyncratic volatility and low returns: A prospect theory explanation. Financial Management, 44(2), pp. 295-322. https://doi.org/10.1111/fima.12057.
14. Bloom, N. (2009). The impact of uncertainty shocks. Econometrica. journal of the econometric society, 77(3), pp. 623-685. https://doi.org/10.3982/ECTA6248.
15. Bollerslev, T., Todorov, V. and Xu, L. (2015). Tail risk premia and return predictability. The Journal of Financial Economics, 118(1), pp. 113-134.
16. Boyer, B., Mitton, T. and Vorkink, K. (2010). Expected idiosyncratic skewness. The Review of Financial Studies, 23(1), pp. 169-202. https://doi.org/10.1093/rfs/hhp041.
17. Bhansali, V. and Davis, J. M. (2010). Offensive Risk Management: Can Tail Risk Hedging Be Profitable? Corporate Governance & Finance eJournal. https://doi.org/10.2139/ssrn.1573760
18. Carhart, M. (1997). On persistence in mutual fund performance. The Journal of Finance, 52(1), pp. 57- 82.
19. Chen, J., H., Hong, and Stein. J. C. (2001). Forecasting crashes: Trading volume, past returns, and conditional skewness in stock prices. The Journal of Financial Economics, 61(3), pp. 345-381. https://doi.org/10.1016/S0304-405X(01)00066-6.
20. Chen, Z. and Petkova, R. (2012). Does idiosyncratic volatility proxy for risk exposure?. The Review of Financial Studies, 25(9), pp. 2745-2787. https://doi.org/10.1093/rfs/hhs084.
21. Conrad, J, Dittmar, R.F, and Ghysels, E. (2013). Ex-ante skewness and expected stock returns. Journal of Finance, 68(1), pp. 85-124. https://doi.org/10.1111/j.1540-6261.2012.01795.x.
22. Cutler, D.M., Poterba, J.M. and Summers, L.H. (1989). What moves stock prices?. The Journal of Portfolio Management, 15(3), pp. 4-12.
23. Daniel, K. and Moskowitz, T.J. (2016). Momentum crashes. The Journal of Financial Economics, 122(2), pp. 221-247. https://doi.org/10.1016/j.jfineco.2015.12.002.
24. Fama, E. F. (1963). Mandelbrot and the Stable Paretian Hypothesis. The Journal of Business, 36(4), pp. 420–429.
25. Fama, E. F. and French. K. R. (2015). A five-factor asset pricing model. The Journal of Finance, 116(1), pp.1-22. https://doi.org/10.1016/j.jfineco.2014.10.010.
26. Fama, E. F. and French, K. R. (1996). Multifactor explanations of asset pricing anomalies. The Journal of Finance, 51(1), pp. 55-84. https://doi.org/10.1111/j.1540-6261.1996.tb05202.x.
27. Fama, E. F. and French. K. R. (1993). Common risk factors in the returns on stocks and bonds. The Journal of Financial Economics, 33(1), pp. 3-56. https://doi.org/10.1016/0304-405X(93)90023-5.
28. Gao, G. P., Lu, X., Song, Z. (2019). Tail Risk Concerns Everywhere. Management Science, 65(7), pp. 3111-3130. https://doi.org/10.1287/mnsc.2017.2949.
29. Gibbons, M. R., Ross, S. A. and Shanken, J. (1989). A test of the efficiency of a given portfolio. Econometrica: Journal of the Econometric Society, 57(5), pp. 1121-1152.
30. Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The annals of statistics, 3(5), pp. 1163-1174.
31. Huang, W., Liu, Q., Rhee, S. G. and Zhang, L. (2009). Return reversals, idiosyncratic risk, and expected returns. The Review of Financial Studies, 23(1), pp. 147-168. https://doi.org/10.1093/rfs/hhp015.
32. Jiang, G.J., Xu, D. and Yao, T. (2009). The information content of idiosyncratic volatility. Journal of Financial and Quantitative Analysis, 44(1), pp. 1-28. https://doi.org/10.1017/S0022109009090073.
33. Kelly, B. and Jiang, H. (2014). Tail risk and asset prices. The Review of Financial Studies, 27(10), pp. 2841-2871. https://doi.org/10.1093/rfs/hhu039.
34. Kim, H. and Kung, H. (2017). The asset redeploys ability channel: How uncertainty affects corporate investment. The Review of Financial Studies, 30(1), pp. 245-280. https://doi.org/10.1093/rfs/hhv076.
35. Lakonishok, J., Shleifer, A. and Vishny, R. W. (1994). Contrarian investment, extrapolation, and risk. The Journal of Finance, 49(5), pp.1541–1578. https://doi.org/10.1111/j.1540-6261.1994.tb04772.x.
36. Levy, H. (1978). Equilibrium in an Imperfect Market: A Constraint on the Number of Securities in the Portfolio. The American Economic Review, 68(4), pp. 643-658.
37. Long, H., Jiang, Y. and Zhu, Y. (2018). Idiosyncratic tail risk and expected stock returns: Evidence from the Chinese stock markets. Finance Research Letters, 24(16), pp. 129-136. https://doi.org/10.1016/j.frl.2017.07.009.
38. Long, H., Zhu, Y., Chen, L. and Jiang, Y. (2019). Tail risk and expected stock returns around the world. Pacific-Basin Finance Journal, 56(9), pp. 162-178. https://doi.org/10.1016/j.pacfin.2019.06.001.
39. Malkiel, B. G. and Xu, Y. (1997). Risk and return revisited. Journal of Portfolio Management, 23(3), pp. 9-14. https://doi.org/10.3905/jpm.1997.409608.
40. Malkiel, B. G. and Xu, Y. (2002). Idiosyncratic Risk and Security Returns. Working Paper, the University of Texas at Dallas. The USA.
41. Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36(4), pp. 394-419.
42. Massacci, D. (2017). Tail Risk Dynamics in Stock Returns: Links to the Macroeconomy and Global Markets Connectedness. Management Science, 63(9), pp. 3072–3089. https://doi.org/10.1287/mnsc.2016.2488.
43. Merton, R.C. (1987). Presidential address: a simple model of capital market equilibrium with incomplete information. Journal of Finance, 42(3), pp. 483–510. https://doi.org/10.1111/j.1540-6261.1987.tb04565.x.
44. Ogbonna, A. E. and Olubusoye, O. E. (2021). Tail Risks and Stock Return Predictability: Evidence From Asia-Pacific. Asian Economics Letters, 2(3), pp. 1-6. https://doi.org/10.46557/001c.24417.
45. Porta, R. L., Lakonishok, J., Shleifer, A. and Vishny, R. (1997). Good news for value stocks: Further evidence on market efficiency. The Journal of Finance, 52(2), pp. 859-874. https://doi.org/10.1111/j.1540-6261.1997.tb04825.x.
46. Reinganum, R. (1981). Misspecification of capital asset pricing: Empirical anomalies based on earnings' yields and market values. Journal of Financial Economics, 9(1), pp. 19-46. https://doi.org/10.1016/0304-405X(81)90019-2.
47. Sharma, M. and Jain, A. (2020). Role of size and risk effects in value anomaly: Evidence from the Indian stock market. Cogent Economics & Finance, 8(1), A. 1838694. https://doi.org/10.1080/23322039.2020.1838694.
48. Shiller, R. J. (2000). Measuring bubble expectations and investor confidence. The Journal of Psychology and Financial Markets, 1(1), pp. 49–60. https://doi.org/10.1207/S15327760JPFM0101_05.
49. Sortino, F. A. and Price, L. N. (1994) Performance measurement in a downside risk framework. Journal of Investing, 3(3), pp. 59-65. https://doi.org/10.3905/joi.3.3.59.
50. Spiegel, M., Wang. X. (2005). Cross-Sectional Variation in Stock Returns: Liquidity and Idiosyncratic Risk. Working Paper, 05-13.
51. Sun, K., Wang, H. and Zhu, Y. (2021). What Drives the Tail Risk Effect in the Chinese Stock Market?. Available at SSRN 3851205.
52. Tanabe, K. )2018(. Pareto’s 80/20 rule and the Gaussian distribution. Physica A: Statistical Mechanics and its Applications, 510, pp. 635-640. https://doi.org/10.1016/j.physa.2018.07.023
CAPTCHA Image